Software Agents and User Autonomy

Category:
Application Area:
Technical Issues:

Authors:

Contact Information:

Paper

Softbots (could apply to all)
collaboration between people-and agents
evaluation criteria

social impact

Batya Friedman, Colby College
Helen Nissenbaum, Princeton University

Helen Nissenbaum

Phone - (609) 258-2879

FAX - (609) 258-2729 .

E-mail - helen@phoenix.princeton.edu
University Center for Human Values
Marx Hall

Princeton University

Princeton, NJ 08544




Software Agents and User Autonomy 2

Software Agents and User Autonomy

: ABSTRACT
Software agents comprise a new area for research and soon will be
embedded and ubiquitous in modem computing systems. In this formative
phase, it is important to develop comprehensive measures of excellence
for evaluation. To criteria in the literature — competence, completeness,
correctness, efficiency, reliability, and trust -- we propose as an essential
complement: user autonomy. In this paper we: (1) provide a definition
and rationale for user autonomy in relation to software agents; (2) describe
a framework for understanding how user autonomy can be promoted or
undermined through the design of software agents; and (3) consider
justifiable limitations on user autonomy.

Some critics of technology contend that a small, privileged group of individuals use
technological advances to diminish the autonomy of others. This consequence is surely
possible. Yet it can be otherwise insofar as those who fund, design, and build technology
take into account effects on human autonomy. Thus, in this paper we: (1) provide a
definition and rationale for user autonomy in relation to software agents; (2) describe a
framework for understanding how user autonomy can be promoted or undermined
through the design of software agents; and (3) consider Jjustiftable limitations on user
autonomy.

THE CRITERION OF USER AUTONOMY

Good software agents must measure up against a set of criteria for excellence. Some of
these criteria are drawn from a larger set that measures the quality of software in general
- criteria such as correctness, completeness, efficiency, reliability, and safety (see
Riecken, 1994). Other criteria, like competence and trust, are particularly relevant to
agents (Maes, 1994; Maes & Wexelblat, 1996). Elsewhere, we have argued that this set
of criteria should be expanded to include those of social and ethical significance
(Friedman & Kahn, 1992; Friedman & Nissenbaum, 1996). Our focus on user autonomy
extends this line of investigation.

By autonomous individuals we mean individuals who are self-determining: they construct
their own goals and values, and are able to decide, plan, and act in ways they believe will
help to achieve their goals and promote their values. Autonomy is fundamental to human
flourishing and self-development (Gewirth, 1978; Hill, 1991). When people are denied
autonomy, such as slaves or indentured laborers, we judge them to have been morally
violated. They are prevented from realizing themselves, not respected as human beings,



Software Agents and User Autonomy 3

and treated as means to someone else's ends. Moreover, those.who are not treated and
viewed as autonomous individuals cannot be held morally responsible for their actions.

To recognize that user autonomy is a separable criterion from those noted above,
consider the widely used metaphor of the personal assistant. A person takes on an
assistant to perform work that he would like, or needs to have done and, for whatever
reasons, chooses not to do himself. Perhaps the work is tedious, difficult, dangerous, or
time-consuming. The assistant acts for, and on behalif of, the person. Ideally the
assistant satisfies the above set of criteria of excellence: he is trustworthy, competent,
reliable, and so forth; but is this always enough?

We think not. To convey our concerns, consider three cases where user autonomy is
undermined.

Case 1: In Harold Pinter's screenplay for the movie 7he Servant, an effete, young, English
gentleman hires a butler. The butler is as competent and reliable as the gentleman is
frivolous and irresponsibie. The butler solicitously does the master's bidding until the
relationship begins to take a strange and sinister turn. The gentleman, though master,
becomes increasingly dependent on the servant. The servant, who continues to fulfill the
master's desires becomes more and more domineering in defining just what these desires
ought to be. By the end of the film there has been a strange turnaround with the master
as servant and servant as master. This screenplay illustrates that by engaging with a
personal assistant, one's goals can unknowingly come to be reshaped, if not twisted. The E
important point here is that the change can occur unknowingly and, thus, diminish the

charting of one's own goals and the direction of one's life.

Case 2: It is understood that people usually know their own goals better than others, even
if their self-knowledge may be imperfect. Thus, to promote autonomy one allows people
to seek advice from others, but ultimately leaves the decision-making (even if it is the
decision to delegate decision-making) up to the individual. For example, imagine that a
woman with cancer seeks advice from her physician. The physician, focusing on
biological concerns to sustain life, recommends an intensive chemotherapy program that
will tikely extend her [ife for another 4-5 years. Forgoing treatment, the physician
predicts about one year of further life, largely painfree. From the woman's perspective, it
is plausible that psychological concerns with quality of life outweigh length of life. In
other words, while the medical professional recommends chemotherapy, the autonomous :
patient declines because she is best privy to and acts on her own values and goals. Had
the physician the authority to mandate the chemotherapy, the patient's autonomy would
have been undermined.

Case 3: Autonomy is centrally concerned with self-determination -- making one's own
decisions, even if those decisions are sometimes wrong, Tt is this aspect of decision-
making that allows us to be responsible for the consequences of our actions. Continuing
with the example of the patient and physician above, let us imagine that after some time



Software Agents and User Autonomy 4

the patient realizes that she had misjudged her own goals and values -- that, indeed, for
her longevity would have outweighed quality of life. As an autonomous individual, her
unfortunate decision was not only hers to make, but responsibility for the decision rests
with her. ‘

In the above three cases, the personal assistant is another human being. Yet, we think
that the relationship of a user to digital agents can be distinguished along similar lines,
namely, those that preserve, or even enhance user autonomy, and those that do not. The
examples show that user autonomy may be distilled as a distinct characteristic. Its
preservation should be addressed explicitly through design and not simply left to chance.

Moreover, when the personal assistant is a technological tool two considerations make
the case for user autonomy even more pressing, First, in contrast to a human personal
assistant with whomn it is possible to negotiate (and re-negotiate) so that autonomy which
may have been undermined can to some extent be regained, such negotiation with a
software agent is currently unlikely, if not impossible. Second, in the case of human
personal assistants, any loss of autonomy while important to the individual affects only
that individual; in the case of widely disseminated software agents the loss of autonomy
can be systemic and pervasive. Thus, it becomes important to move toward a framework

for understanding how user autonomy can be promoted or undermined through the design
of software agents.

ASPECTS OF SOFTWARE AGENTS THAT CAN PROMOTE OR UNDERMINE
USER AUTONOMY

It might seem that designers could maximize user autonomy by following the simple
dictum that more control leads to more user autonomy. After all, if autonomous
individuals need to have freedom to choose ends and means, then it could be said that
wherever possible and at all levels, designers should provide users the greatest possible
control over computing power. On closer scrutiny, however, we see a more complex
picture and a less direct relationship. ‘

User autonomy seems to have less to do with simply the degree of control and more to do
with what aspects of an agent are controltable, and the user’s conception and knowledge
of the agent (cf. Norman, 1994). In the case of a software agent to help with creating
consistent and well formatted documents, for example, a typical non-technically minded
user will have little interest in explicitly controlling lower levels of operation of the agent
even though they will appreciate control over higher level functions -- little interest, say,
in controlling how the agent executes a cut and paste operation or embeds formatting
commands in the document, and more interest in controlling the efficient and effective
formatting of the document. In this case achieving the higher order desires and goals,
~ such as efficiently producing a good-looking document, will enhance autonomy, whereas
excesstve control over all levels of operation of the agent may actually interfere with user
autonomy by obstructing a user's ability to achieve desired goals. In other words,
autonomy is protected where users are given contro! over the “right things at the right




Software Agents and User Autonomy s

time." Of course, the hard work of design is to decide just what and when these are.

Toward this end, we identify five aspects of software agents that can promote or
undermine user autonomy.

Agent Capability

User autonomy can be undermined when the software agent does not provide the user

with the necessary technological capability to realize his or her goals. Said differently,
user autonomy can be undermined when there are states the user desires to reach but no
path exists through the use of the software agent to reach those states. To illustrate this

dimension, consider a mail agent. A reasonable user request for such an agent might be,

"I don't want to see any mail from Martin unless it's really important." This is the sort of

thing people routinely request of their human personal assistants. But technically it may

not be possible to specify this level of intention to a software agent. For an end-user

programmable agent, such as CyberDog, it can be easy to program the agent to "trash all

mail from Martin." And fairly simple to add the qualifier "except when the subject

heading says Tmportant!"." But what if the subject heading was to say "READ ME!1"?

Or "HELP!"? Or any number of other headings that a human personal assistant would

key into as meaning something special that needs attention? True the user could add any

number of additional rules to improve CyberDog's performance, but there is no way to

anticipate, let along logically specify all the possibilities in advance. Our point is this: A

lack of technical capability on the part of the software agent -- to be able to accurately

represent the user's intentions -- can lead to a loss of autonomy for the user.

Agent Complexity

In some instances, software agents may supply users with the necessary capability to
realize their goals, but such realization in effect becomes impossible because of
complexity. That is, a path exists to the state the user desires to reach but negotiating
that path is too difficult for the user. Pattie Maes (1994) points to this problem in her
critique of the end-user programmable approach to software agents. She writes: "The
approach requires too much insight, understanding and effort from the end-user, since the
user has to recognize the opportunity for employing an agent, take the initiative to create
an agent, endow the agent with explicit knowledge (specifying this knowledge in an
abstract language), and maintain the agent's rules over time (as work habits or interests
change)” (p. 32). Similar problems for user autonomy arise with trainable software
agents in instances that require extensive and complex training to achieve good
performance. In effect, from the user's perspective, these software agents are untrainable.
Thus problems of agent complexity arise from a mismatch between the user's abilities —
in terms, for example, of skill level, memory, attention span, computational ability, and

physical ability -- and the user abilities assumed by the software agent to maximize its
use.



Software Agents and User Autonomy 6

Knowledge About the Agent

Sometimes, in order to use the services of an agent as desired, a user must know how the
agent goes about its task. When the design of a software agent does not make this sort of
information about its functioning accessible to the user, then the user's autonomy can be

- undermined. For example, an intelligent search agent for a space like the World Wide
Web (e.g., WebCrawler) can provide the user with important information but hide critical
assumptions about how that information was collected and filtered (e.g., What sites were
contacted? How comprehensive was the search? What search algorithm was used?). Or
consider a trainable agent. The user has performance results (which may be very good)
but no knowledge of or access to the underlying rules and database that the agent uses to
guide that performance. Imagine such a mail agent. If the user receives no mail from a -
particular individual for an extended period of time, there is no way -~ save going outside
the system to ask that individual directly -- for the user to discover if the agent has been
trashing mail from that person or if that individual has simply not sent the user any mail
for a long time.

To their credit, some researchers have explored “explanations" provided by the agent as a
means to help the user understand how the agent has determined a course of action.
Pattie Maes (1994) writes:

Furthermore, the particular learning approach adopted allows the agent to
give "explanations” for its reasoning and behavior in a language the user is
familiar with, namely in terms of past examples similar to the current
situation. For example, "T thought you might want to take this action
because this situation is similar to this other situation we have experienced
before, in which you also took this action” or "because assistant Y to
person 7. also performs tasks that way, and you and Z seem to share work
habits." (pp. 32-33)

The problem for user autonomy with this sort of explanation is that it hinges entirely on
the word "similar” and the user has no sense of the criteria being used to establish
similarity. To the extent the user needs such knowledge about the agent's functioning to
assess if the agent is making judgments that reflect the user's principles (e.g., goals), the
user's autonomy is undermined.

Misrepresentation of the Agent

Users can also experience a loss of autonomy when provided with false or inaccurate
information about the agent. Consider two diverse examples. First, imagine the package
copy for a news filter that states "this news filter is as good as the best personal assistant.”
(iven the state of the field, such hyperbole will mislead a user who believes the package

«..._copy and, thus, develops inaccurate expectations of the software agent's ability to realize

the user's goals. Second, consider a chatterbot in a MUD that people have entered with
the mutually understood goal of meeting and interacting with other visitors, If the _
chatterbot represents itself to the user as another person visiting the MUD, the user will



Software Agents and User Autonomy 7

be lead to engage socially as if with a person. Once discovered, the effect of such
deception is to cast doubt on future interactions; such doubt, in turn, undermines the

quality of those interactions and ultimately effects the user's original goals for visiting the
MUD.

Agent Fluidity

Even if users' large overarching goals remain stable, smaller subsidiary goals are likely to
change. Thus, software agents need to be able to support and easily accommodate
changes in users' goals. Consider this problem for user autonomy in light of software
agents the provide filtering services. The filter works to prevent the user from retrieving
or seeing information that the user does not want to review. Thus, there is a sense in
which a filter acts as a censor. However, as the user's goals change over time, what was
appropriately filtered out early on may become of interest over time. However, most
software agents do not provide users with access to the information that was filtered out -
- afier all, that is what the user initially wanted removed from the user's purview -- but
such information is critical if users are to recognize when their agents need to be
reprogrammed or retrained to meet evolving goals. The point here is that user's goals
will evolve; software agents need to take such evolution into account and provide ready
mechanisms for users to review and fine-tune their agents as their goals change.

ACCEPTABLE LIMITS ON USER AUTONOMY _

‘To argue that user autonomy is a valued criferion of software agents is not to argue that it
1s the paramount value. Just as when people pursue their own goals in acting
autonomously they need to consider and frequently compromise with external factors,
including the rights of others to achieve their ends, so might it be that a design will
Justifiably compromise user-autonomy in favor of other important criteria. The upshot,
on these occasions, will be limiting control of a user over aspects of operation, even
when this is at the expense of his or her autonomy.

By way of example the following two considerations might, at times, place limits on user
autonomy. One consideration entails situations in which safety is at stake. When
software agents are employed in contexts that invotve human welfare, such as helping to
coordinate efforts in an air traffic control system, we may need to restrict user autonomy
to protect against a user with malicious intentions as well as well-intentioned users
guided by poor judgment. A second consideration concerns standardization. Since user
autonomy suggests greater flexibility and personalization, it may appear to run contrary
to goals for standardization. On the one hand, some forms of standardization may restrict
users in ways that are important to them in relation to their goals. On the other hand,
standardization can free users from the burden of relearning how to work with an agent
as they switch among systems (or switch among stations with the same system) and
thereby, in effect, provide users with greater control over their systems. We suspect the
two ideals of standardization and autonomy need not always conflict, but that good
resolutions will depend on identitying the appropriate level of user control.




Software Agents and User Autonomy 8

CONCLUSION

In the development of our technology, we continue — and rightly so - to delegate tasks to
the technology. But, in so doing, we should be wary that through neglect we do not
design technologies in general, and software agents in particular, which diminish user
autonomy. Much work is needed to develop our understanding of user autonomy and to
identify methods to aid with the design process. In our future work we hope to provide
greater specificity in these directions. Here we but note that, as with other criteria such
as reliability, efficiency, and correctness, we hold out the criterion of user autonomy as
an ideal against which we judge the quality of our systems in use. To fall somewhat
short of the ideal is within the realm of our practice; to fall too far short is to
underestimate how all of us (as autonomous individuals) can help shape the direction of
our computing community.

REFERENCES
Friedman, B. & Kahn, P. 11, Jr. (1992). Human agency and responsible computing;
Implications for computer system design. Journal of Systems Software, 17, 7-14.

Friedman, B., & Nissenbaum, H. (1996). Bias in computer systems. ACM Traﬁdctiom
on Information Systems, 14(3}, 1-18. :

Gewirth, A. (1978). Reason and morality. Chicago: University of Chicago Press.

Hill, T. E,, Jr. (1991). Autonomy and self-respect. Cambridge: Cambridge University
Press.

Maes, P. (1994). Agents that reduce work and information overload. Communications
of the ACM, 37(7), 30-40, 146.

‘Maes, P. & Wexelblat, A. (1996, April). Interface agents. Conference proceedings for
the conference on Human Factors in Computing Systems, CHI 96 (pp. 369-370).
New York: Association for Computing Machinery.

Norman, D. A. (1994). How might people interact with agents. Communications of the
ACM, 37(7), 68-71.



